121 research outputs found

    Determination of Best Low-Frequency Microwave Antenna Approach for Future High Resolution Measurements from Space

    Get PDF
    Microwave remote sensing measurements at L-band (~1.2-1.6 GHz) of geophysical parameters such as soil moisture will need to be at higher spatial resolution than current systems (SMOS/ SMAP/ Aquarius) in order to meet the requirements of land surface, ocean, and numerical weather prediction models in the near future, which will operate at ~9-15 km global grids and 1-3 km regional grids in the next few years. In order to make progress toward these needed spatial resolutions, advancements in technology are necessary which would lead to improved effective (i.e. equivalent) antenna size. An architecture trade study was conducted to quantitatively define the value and limits of different microwave technology paths, and to select the most appropriate path to achieve the high spatial resolution required by science in the future without sacrificing performance, accuracy, and global coverage

    Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region

    Get PDF
    The potential for soil moisture and vegetation water content retrieval using Special Sensor Microwave Imager (SSM/I) brightness temperature over a corn and soybean field region was analyzed and assessed using datasets from the Soil Moisture Experiment 2002 (SMEX02). Soil moisture retrieval was performed using a dual-polarization 19.4-GHz data algorithm that requires the specification of two vegetation parameters¿single scattering albedo and vegetation water content. Single scattering albedo was estimated using published values. A method for estimating the vegetation water content from the microwave polarization index using SSM/I 37.0-GHz data was developed for the region using extensive datasets developed as part of SMEX02. Analyses indicated that the sensitivity of the brightness temperature to soil moisture decreased as vegetation water content increased. However, there was evidence that SSM/I brightness temperatures changed in response to soil moisture increases resulting from rainfall during the later stages of crop growth. This was partly attributed to the lower soil and vegetation thermal temperatures that typically followed a rainfall. Comparisons between experimentally measured volumetric soil moisture and SSM/I-retrieved soil moisture indicated that soil moisture retrieval was feasible using SSM/I data, but the accuracy highly depended upon the levels of vegetation and atmospheric precipitable water; the standard error of estimate over the 3-week study period was 5.49%. The potential for using this approach on a larger scale was demonstrated by mapping the state of Iowa. Results of this investigation provide new insights on how one might operationally correct for vegetation effects using high-frequency microwave observation

    Soil Moisture Active Passive (SMAP) Calibration and Validation Plan and Current Activities

    Get PDF
    The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-launch validation infrastructure and continues through the mission life. However, the major focus is on a relatively short Cal/Val period following launch. The general approach and elements of the SMAP Cal/Val plan will be described and along with details on several ongoing or recent field experiments designed to address both near- and long-term Cal/Val

    Snooping Around: Observation Planning for the Signals of Opportunity P-Band Investigation (SNOOPI)

    Get PDF
    Launching October 2022, the SigNals Of Opportunity P-band Investigation (SNOOPI) is a 6U CubeSat dedicated to demonstrating spaceborne remote sensing of root zone soil moisture and snow water equivalent using signals of opportunity. P-band (240-500 MHz) frequencies are required to penetrate dense vegetation or snow and into the top 200 cm of soil, but this band is heavily subscribed. Rather than transmitting its own signal SNOOPI will observe reflected signals from the U.S. Navy’s Mobile User Objective System satellites. This makes planning observations challenging. The point of reflection is a function of both the transmitter and receiver satellite positions as well as terrain. The direct signal must be observed simultaneously on the same antenna pattern with sufficient gain. Ionospheric delay must also be accounted for. To satisfy these requirements and maintain a cadence of one observation per day, the SNOOPI science operations center at Purdue University has developed custom software for scheduling activities onboard the satellite. The software is highly automated, involving the user only in the definition of observation targets, priorities, and giving final approval to the proposed schedule. Orbit, attitude, power, communication, memory, and observation constraints are handled by a combination of linear programming and pattern search optimization methods. The purpose of this paper is to describe the challenges of scheduling observations for a signals of opportunity mission and illustrate how they were solved for SNOOPI

    AMSR2 Soil Moisture Product Validation

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W) mission. AMSR2 fills the void left by the loss of the Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) after almost 10 years. Both missions provide brightness temperature observations that are used to retrieve soil moisture. Merging AMSR-E and AMSR2 will help build a consistent long-term dataset. Before tackling the integration of AMSR-E and AMSR2 it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites. Three products that rely on different algorithms were evaluated; the JAXA Soil Moisture Algorithm (JAXA), the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). Results indicate that overall the SCA has the best performance based upon the metrics considered

    GCOM-W AMSR2 Soil Moisture Product Validation Using Core Validation Sites

    Get PDF
    The Advanced Microwave Scanning Radiometer 2 (AMSR2) is part of the Global Change Observation Mission-Water (GCOM-W). AMSR2 has filled the gap in passive microwave observations left by the loss of the Advanced Microwave Scanning RadiometerEarth Observing System (AMSR-E) after almost 10 years of observations. Both missions provide brightness temperature observations that are used to retrieve soil moisture estimates at the near surface. A merged AMSR-E and AMSR2 data product will help build a consistent long-term dataset; however, before this can be done, it is necessary to conduct a thorough validation and assessment of the AMSR2 soil moisture products. This study focuses on the validation of the AMSR2 soil moisture products by comparison with in situ reference data from a set of core validation sites around the world. A total of three soil moisture products that rely on different algorithms were evaluated; the Japan Aerospace Exploration Agency (JAXA) soil moisture algorithm, the Land Parameter Retrieval Model (LPRM), and the Single Channel Algorithm (SCA). JAXA, SCA and LPRM soil moisture estimates capture the overall climatological features. The spatial features of the three products have similar overall spatial structure. The JAXA soil moisture product shows a lower dynamic range in the retrieved soil moisture with a satisfactory performance matrix when compared to in situ observations (ubRMSE0.059 m3m3, Bias-0.083 m3m3, R0.465). The SCA performs well over low and moderately vegetated areas (ubRMSE0.053 m3m3, Bias-0.039 m3m3, R0.549). The LPRM product has a large dynamic range compared to in situ observations with a wet bias (ubRMSE0.094 m3m3, Bias0.091 m3m3, R0.577). Some of the error is due to the difference in observation depth between the in situ sensors (5 cm) and satellite estimates (1 cm). Results indicate that overall the JAXA and SCA have the best performance based upon the metrics considered

    Seasonal Dependence of SMAP Radiometer-Based Soil Moisture Performance as Observed over Core Validation Sites

    Get PDF
    The NASA SMAP (Soil Moisture Active Passive) mission provides a global coverage of soil moisture measurements based on its L-band microwave radiometer every 2-3 days at about 40 km resolution. The soil moisture retrieval algorithms model the brightness temperature as a function of soil moisture, surface conditions and vegetation. External data sources inform the algorithms about the surface conditions and vegetation, which enable the retrieval of soil moisture. The inversion process contains uncertainties related to radiometer measurements, forward model assumptions and ancillary data sources. This study focuses on the uncertainties that depend on the seasonal evolution of the surface conditions and vegetation. This study compares the SMAP and core validation site (CVS) soil moisture values over a period of three years to extract the evolution of performance metrics over time. The analysis showed that most CVS that include managed agriculture exhibit significant time-dependent seasonal bias. This bias was linked to seasonal temperature cycle, which is a proxy to several features that can cause seasonally dependent errors in the SMAP product

    Assessment of Version 4 of the SMAP Passive Soil Moisture Standard Product

    Get PDF
    NASAs Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAPs radiometer-derived standard soil moisture product (L2SMP) provides soil moisture estimates posted on a 36-km fixed Earth grid using brightness temperature observations and ancillary data. A beta quality version of L2SMP was released to the public in October, 2015, Version 3 validated L2SMP soil moisture data were released in May, 2016, and Version 4 L2SMP data were released in December, 2016. Version 4 data are processed using the same soil moisture retrieval algorithms as previous versions, but now include retrieved soil moisture from both the 6 am descending orbits and the 6 pm ascending orbits. Validation of 19 months of the standard L2SMP product was done for both AM and PM retrievals using in situ measurements from global core calval sites. Accuracy of the soil moisture retrievals averaged over the core sites showed that SMAP accuracy requirements are being met

    Development and Validation of The SMAP Enhanced Passive Soil Moisture Product

    Get PDF
    Since the beginning of its routine science operation in March 2015, the NASA SMAP observatory has been returning interference-mitigated brightness temperature observations at L-band (1.41 GHz) frequency from space. The resulting data enable frequent global mapping of soil moisture with a retrieval uncertainty below 0.040 cu m/cu m at a 36 km spatial scale. This paper describes the development and validation of an enhanced version of the current standard soil moisture product. Compared with the standard product that is posted on a 36 km grid, the new enhanced product is posted on a 9 km grid. Derived from the same time-ordered brightness temperature observations that feed the current standard passive soil moisture product, the enhanced passive soil moisture product leverages on the Backus-Gilbert optimal interpolation technique that more fully utilizes the additional information from the original radiometer observations to achieve global mapping of soil moisture with enhanced clarity. The resulting enhanced soil moisture product was assessed using long-term in situ soil moisture observations from core validation sites located in diverse biomes and was found to exhibit an average retrieval uncertainty below 0.040 cu m/cu m. As of December 2016, the enhanced soil moisture product has been made available to the public from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center
    • …
    corecore